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ABSTRACT 
 

In this study, the Advanced Regional Prediction System (ARPS), and its associated three-dimensional 

variational analysis (3DVAR) package are used to simulate a tornadic supercell at 400-m grid spacing.  

This storm produced an EF3 tornado in Johnson County, TX during the evening of 15 March 2013.  Data 

from Doppler radar, satellite, aircraft, radiosondes, profilers, and surface observations are assimilated in 

this work.  We show that the assimilation of non-conventional surface observations from three networks: 

the Citizen Weather Observer Program (CWOP), Global Science and Technology (GST) and Automated 

Weather Stations (AWS) operated by EarthNetworks, in and around the storm inflow, were fundamentally 

important to the development of an intense low-level mesocyclone.  Simulations that did not incorporate 

this non-conventional data either developed a weak mesocyclone that was displaced to the east of the actual 

tornado track, or were unable to develop a defined mesocyclone in the first place.  In particular, the 

assimilation of thermodynamic variables (temperature, pressure and moisture) from a subset of AWS 

observations near the storm’s inflow environment leads to the most accurate simulation of the low-level 

mesocyclone. 

–––––––––––––––––––––––– 

 

1.  Introduction 

 

Evaluating the impacts of observations on 

atmospheric analyses and numerical forecasts 

has been an active and expanding topic of 

research since the 1960s.  An understanding of 

the relative influence of individual observing 

platforms is important in guiding cost-benefit 

decisions on the optimal mix of future 

observations.  In two recent reports, the National 

Research Council (NRC) notes that the current 

state of observation networks in the United 
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States is inadequate to satisfy the needs of 

producing high-resolution analyses and forecasts 

of high-impact weather events (NRC 2009, 

2012).   

 

In these reports, the NRC recommends the 

development of a distributed adaptive “network 

of networks”, in which observations from a 

multitude of providers are integrated into a 

coordinated, national observing infrastructure.  

In this way, the present chaotic nature of the 

mesoscale observing networks—brought on by 

the varying sensor qualities and siting 

specifications—is reduced as comprehensive 

metadata describing the sensor characteristics of 

each data source are centralized and improved.  

An additional critical recommendation by the 

NRC is for the development of research testbeds, 
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in which the relative impact of observing 

networks are determined through extensive 

research and testing.   

 

Historically, observation impact has been 

quantified either through the use of observing 

system simulation experiments (OSSEs) or 

observing system experiments (OSEs).  In 

OSSEs, impacts from potential future 

observation systems are anticipated by running 

simulations using synthetic observations, which 

are then compared to a model “truth” run (e.g., 

Lord et al. 1997; Atlas 1997).  In OSEs, real 

observations from a particular observing system 

are denied from a control simulation in which all 

available observation types are assimilated and 

then compared to the control run.  The OSE 

design has the benefit of using real data at the 

cost of 1) being more computationally expensive 

since a new experiment must be run for each 

observation type, and 2) having errors in the 

control run. 

 

As computing power has increased, OSE-

related research likewise has expanded.  Initially, 

OSEs tested the impact of incorporating satellite 

and upper-air data on a model’s portrayal of 

synoptic-scale weather systems (e.g. Gilchrist 

1982; Graham et al. 2000; Zapotocny et al. 2002, 

2005, 2007).  Subsequent studies determined the 

impacts of assimilating GPS-derived precipitable 

water observations, mesonet observations, and 

profiler data on meso-α-scale features (Benjamin 

et al. 2004, 2010).  More recently, research has 

tested the effects of including radar radial winds 

and reflectivity on high-resolution forecasts of 

deep moist convection (Schenkman et al. 2011a, 

2011b).  In this study, we attempt to quantify the 

impacts of assimilating surface observations on 

high-resolution simulations of a supercell on 15–

16 May 2013, which spawned an EF3 tornado 

southwest of the Dallas-Fort Worth Metroplex. 

 

The inclusion of reflectivity and radial 

velocity data from Doppler radars has been 

shown to be very important to high-resolution 

numerical prediction of thunderstorms because 

radars provide data at the spatiotemporal scale 

needed to sample convective storms (Hu et al. 

2006a, 2006b; Dawson and Xue 2006; 

Schenkman et al. 2011a).  Schenkman et al. 

(2011b) found that the addition of radial winds 

from four low-scanning Collaborative Adaptive 

Sensing of the Atmosphere (CASA; McLaughlin 

et al. 2009) X-band radars was critical to 

accurately predict the evolution of the low-level 

wind field and gust fronts associated with a large 

mesoscale convective system.  Those authors 

also found modest positive forecast impact with 

the inclusion of 5-min Oklahoma Mesonet data 

owing to improved sampling of both the low-

level wind field and thermodynamic variables, 

but these improvements were not as important as 

the assimilation of the CASA radial winds. 

 

The positive results of radar-assimilation 

research have substantial implications for the 

new Warn-on-Forecast initiative (Stensrud et al. 

2009, 2013), in which warnings of severe 

convective storms (and in particular, tornadoes) 

moves from a warn-on-detection basis to one 

based increasingly on high-resolution numerical 

simulations.  Obviously, this vision cannot be 

realized until explicit and accurate forecasts of 

tornadic thunderstorms become commonplace.  

Accurate initial conditions, which depend on the 

optimal assimilation of available observations, 

are a crucial part of realizing this vision. 

 

The present study is unique in that we 

assimilate surface observations from several non-

conventional surface observations such as the 

EarthNetworks WeatherBug network, the Citizen 

Weather Observer Program (CWOP 2014), and 

Global Science and Technology (GST) (see 

section 4a), in addition to standard data from 

METARs, upper-air rawinsonde observations 

(RAOBs), satellites, aircraft, and operational 

radars.  To the best of our knowledge, this is the 

first study to assess the impacts of assimilating 

these non-conventional observations on high-

resolution simulations of a supercell.  We use the 

Advanced Regional Prediction System (ARPS; 

Xue et al. 2000, 2001, 2003) as the numerical 

prediction model and its associated three-

dimensional variational analysis (3DVAR; Gao 

et al. 2004) package for data assimilation.  Our 

goal is to quantify the impact of these surface-

observing systems for the accurate analysis and 

prediction of high-impact weather.   

 

Section 2 provides a brief synoptic and 

mesoscale overview of the 15 May 2013 north-

central Texas tornado outbreak.  Section 3 

provides details on the ARPS forecast model, 

data assimilation system, and complex cloud-

analysis package.  Section 4 outlines the 

numerical simulation methodology and data-

denial experiments.  Section 5 provides a 

discussion of analysis and experiment results.  

Finally, summary and concluding remarks are 

presented in section 6. 
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2.  Case overview 

 

a.   Event details 

 

A localized tornado and severe weather event 

occurred during the late afternoon and evening of 

15 May 2013 across portions of north-central 

Texas.  A total of twenty tornadoes were 

reported.  The first significant tornado—an 

EF4—impacted Granbury, TX in Hood County.   

The second significant tornado to develop, which 

is the focus of this study, caused EF3 damage in 

Johnson County near Cleburne, Texas.  This 

tornado caused $124 million in property damage, 

seven injuries, and was notable for its erratic 

movement and large size.  In particular, after an 

initial motion to the east, the tornado moved to 

the southeast before finally making a hard left 

turn towards Lake Pat Cleburne before 

dissipating just outside the city limits.  At its 

largest, the Cleburne tornado approached a mile 

(1.6 km) in diameter.  Figure 1 shows the 

tornado path and EF-rating from the Dallas-Fort 

Worth National Weather Service (NWS) damage 

survey.  

 

1.5 km 

Lake Pat 

Cleburne   

Cleburne 

 
 

Figure 1:  The Cleburne EF3 tornado track as 

surveyed by the National Weather Service in 

Dallas-Fort Worth, TX.  The cyan, green, 

yellow, and orange outlines correspond to EF0, 

EF1, EF2 and EF3 damage respectively 

(National Weather Service 2015).  

 

b.  Meteorological setup and discussion 

 

During the overnight hours on 14 May 2013, 

a low-amplitude 500-hPa shortwave trough 

moved northeast out of the Texas Big Bend 

region.  By the morning of 15 May, an upper-

level low was located near Wichita Falls, TX 

with a deepening surface low in the Texas 

Panhandle (Fig. 2a).  Throughout the morning 

and early afternoon, clouds and precipitation 

associated with vorticity maxima progressing 

around the base of the upper-level trough moved 

east towards the Dallas-Fort Worth metropolitan 

region.  By mid-afternoon, skies had cleared 

across much of western and central Texas 

leading to the development of an axis of 

increased buoyancy under cooler 

midtropospheric temperatures, with surface-

based (SB) CAPE values increasing to near 

3000 J kg
–1 

(Fig. 2b). 

 

Between 2000 and 2100 UTC, visible 

satellite imagery (not shown) revealed a 

developing cumulus field in the vicinity of 

strong surface confluence and a diabatic-heating 

axis between Wichita Falls and San Angelo, TX.  

Around 2300 UTC, thunderstorms initiated from 

this cumulus field following the erosion of the 

morning capping inversion.  Increasingly backed 

surface flow to the east of this cumulus field, 

along with 20–25 m s
–1

 of south-southwesterly 

850-hPa flow (Fig. 2c), produced an 

environment favorable for supercells, with 

supercell composite parameter (SCP; Thompson 

et al. 2003) values increasing to near 20 (Fig. 2d) 

across the Dallas-Fort Worth Metroplex during 

the evening hours.  

 

The supercell that spawned the EF3 tornado 

in Johnson County, TX, developed and 

intensified slowly between 2230 and 2330 UTC 

on 15 May, initially near Erath County.  By 0132 

UTC, gate-to-gate shear in excess of 40 m s
–1

 

was visible on KFWS WSR-88D radar (Fig. 3a).  

At this point, the low-level circulation was 

moving generally to the southeast.  At 0212 

UTC, EF0 damage was reported just to the 

southwest of Cleburne, at which point the 

tornado began to move to the northeast.  The 

tornado then passed over Lake Pat Cleburne and 

reached its maximum EF3 rating with an 

estimated width of one mile.   Around 0218 

UTC, the tornado made a final hard left turn 

towards Cleburne as it began dissipating at 0223 

UTC (Fig. 3b).   
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Figure 2:  a) 500-hPa geopotential height (black contours, m), temperature (dashed red contours, °C), and 

wind speeds >40 kt (20 m s
–1

 ,color fill) at 1400 UTC 15 May 2013; b) surface-based CAPE (red contours,  

J kg
–1

) and convective inhibition (color fill, J kg
–1

) at 1900 UTC; c) 850-hPa geopotential heights (solid 

black contours, m), isotherms (dashed, °C), and dewpoint (color fill, °C) at 0000 UTC 16 May 2013; and d) 

supercell composite parameter (SCP, Thompson et al. 2003) and storm-motion vectors valid at the same 

time.  These graphics are from the Surface Objective Analysis dataset (Bothwell et al. 2002). 

 
3.  Forecast model packages and 

computational domains 

 

a.  Forecast model and parameters 

 

For this study, we use the ARPS, a 

compressible, non-hydrostatic general-purpose 

model that has been used previously to simulate 

events from tropical cyclones (Zhao and Xue 

2009), mesoscale convective systems (Dawson 

and Xue 2006), dryline convection initiation (Liu 

and Xue 2008), and tornadoes (Schenkman et al. 

2014), for example.  Here, we employ full model 

physics, a 1.5-order turbulent kinetic energy-

based subgrid-scale closure scheme, fourth-order 

advection in both the horizontal and vertical, 

NASA Goddard Space Flight Center longwave 

radiation parameterization (Chou and Suarez 

1994), and Lin et al. (1983) single-moment, 

three-ice-species microphysics. 

 

Following Snook and Xue (2008) and 

Schenkman et al. (2011a), we use a reduced 

value of the rain-intercept parameter, which 

defines the maximum concentration of raindrops 

of zero diameter in a Marshall-Palmer 

distribution (Dawson et al. 2010).   Based on 

visual inspection of simulations, this change 

results in generally improved forecasts of 

reflectivity and low-level vertical vorticity fields.  

Snook and Xue (2008) find that reducing the 

rain-intercept parameter lead to the production of 

more large raindrops and fewer small drops.   
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Figure 3:  Observed 0.5° radial velocity from the 

Forth Worth, TX Doppler radar (KFWS, located 

in the upper right of each panel) valid at a) 0132 

UTC 16 May 2013 and b) 0223 UTC.  The 

velocity couplet is circled in black. Severe 

thunderstorm, tornado and flash flood warnings 

valid at the indicated times are shown in yellow, 

magenta, and green outlines, respectively. 

 

     This, in turn, results in less evaporational 

cooling owing to:  1) generally faster terminal 

fall speeds, and 2) reduced total surface area 

compared to small droplets containing the same 

amount of rainwater.  The reduction in 

evaporational cooling leads to the development 

of weaker low-level cold pools and stronger and 

more sustained updrafts within supercells.  In our 

experiments, the rain-intercept parameter is set to 

the standard value of 8.0 × 10
6
 m

–4
 (Lin et al. 

1983) on the coarse-resolution nest and reduced 

to 8.0 × 10
5
 m

–4
 on the high-resolution 

computational domain (Fig. 4) when reflectivity 

data from Doppler radars are assimilated (see 

section 4). 

 

b.  Model grids and terrain 

 

We use a set of two one-way nested grids 

with horizontal grid spacings of 3 km and 400 m, 

respectively.  Both domains use 53 vertical 

levels, with a vertical grid spacing that stretches 

from 20 m near the surface to about 400 m at 

model top (21.1 km AGL) following a hyperbolic 

tangent function (Xue et al. 1995).  The 3-km 

domain is centered on 32.7 °N, 97.55 °W and is 

roughly 900 km × 900 km.  The 400-m domain 

is centered on 32.65 °N, 97.2 °W and is roughly 

193 km × 161 km.  This grid covers the 

immediate Dallas-Fort Worth metropolitan 

region, including its southwestern suburbs in 

Hood and Johnson counties.  Terrain elevation 

for both the 3-km and 400-m grids is supplied by 

the U.S. Geological Survey 30-s terrain-elevation 

dataset. 

 

c.  The ARPS 3DVAR 

 

The ARPS 3DVAR (Gao et al. 2004) is used 

as the data assimilation tool in this study.  The 

ARPS 3DVAR minimizes a cost function, 

written as:  

 

            (1) 

          

 
where the first term on the right-hand side 

represents the difference between the analysis 

state vector, x and the background field, xB 

weighted by the inverse of the background error 

covariance matrix, B.  The second term measures 

the difference between the model state projected 

to observation locations and observed values, yO 

by the linearized forward operator, H weighted 

by the inverse of the observation error 

covariance matrix O.  Currently, the cross-

correlations between variables are not included 

in the background error matrix and observation 

errors are assumed to be uncorrelated, resulting 

in a diagonal O matrix.  Observation errors used 

in this study are shown in Table 1.  These values 

were chosen based on several assimilation tests 

(not shown) that varied the observation to  
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Table 1:  Observation errors assigned to various sensors. 

 

Data Source u (m s
–1

) v (m s
–1

) Pressure (hPa) 
Temperature 

(K) 
RH (%) 

RAOBs 2–3.5 2–3.5 0.4–0.6 1–2 5–15 
Profilers 2–3.5 2–3.5 –– –– –– 
ASOS 1.5 1.5 0.75 0.8 5 
AWOS 1.5 1.5 1.22 0.8 10 
ACARS 1.5 1.5 1.22 1.11 10 
Mesonets 1.5 1.5 0.75 1.11 5 
Non-Conventional 2 2 1 3 10 

 

 

3-km 

400-m 

100 km 
 

 

Figure 4:  Overview of the coarse 3-km domain and high-resolution, 400-m nest.  WSR-88D range rings 

(dashed blue lines, 240 km), Terminal Doppler Weather Radar (TDWR, dashed black, 90 km), and CASA 

(solid green, 30 km) are shown as well. 

 

 

background error ratios.  We then qualitatively 

assessed the smoothness of the analyses to avoid 

overfitting to the observations and creating 

analysis bullseyes.  Spatial correlations of 

background error are modeled by repeated 

applications of a first order recursive filter 

(Hayden and Purser 1995) in all directions.  

Multiple passes of this recursive filter result in 

Gaussian and isotropic background error 

correlations.  The ARPS 3DVAR uses an 

incremental form of the cost function with 

preconditioning using the square root of the B 

matrix (Gao et al. 2004). 

The final term in Eq. (1), JC, is a penalty 

term, which in this case consists of a weak 

anelastic mass divergence constraint.  This term 

is written as: 

 
The variable D is: 

 

 
 

where ρ is the mean air density at individual 

model levels, α and β are horizontal and vertical 
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weighting coefficients, and λC determines the 

overall weight of the JC penalty term in (2).  As 

discussed by Gao (2004) and Hu et al. (2006b), 

the effect of this additional term is to apply a 

weak anelastic mass constraint to the analyzed 

wind field, which acts to disperse observed 

radar radial velocities into the cross-beam and 

vertical directions.  In Hu et al. (2006b), the 

authors note that the true 3D divergence 

constraint (that is, when α = β = 1) only works 

for grids with a vertical-to-horizontal grid 

aspect ratio near unity.  In cases with large 

aspect ratios near the surface (as with this 

work), the effect of the full 3D constraint is to 

force most of the wind-field adjustment into 

vertical velocity with very little adjustment in 

the horizontal direction.  For this reason, 

following Hu et al. (2006b), we use a horizontal 

weighting factor of α λC = 1000 and a reduced 

vertical weighting factor of β λC = 100 in our 

experiments.  Because this additional cost term 

is a weak constraint, mass divergence is not 

forced to be zero and, therefore, the analysis is 

able to develop physically justifiable 

convergence-divergence dipoles near 

thunderstorm updrafts, for example.    

 

Some substantial changes to this release of 

the ARPS 3DVAR over previous versions 

include: the ability to specify decorrelation 

lengths rather than grid points when 

observations are spread in the vertical, general 

improvements to the processing and analysis of 

radar reflectivity data, and the addition of a 

quality-control check to ensure unconventional 

observations with incorrect surface elevations 

are screened out of the analysis process.  Gao at 

al. (2004) offer more information about the 

3DVAR formulation and the mass divergence 

constraint. 

 

d.  Complex cloud analysis 

 

The ARPS complex cloud analysis 

incorporates cloud and moisture information 

from surface observations, satellite (both visible 

and infrared channels), and reflectivity data from 

Doppler radars to update model fields of 

hydrometeors and potential temperature.  

Because no direct links between reflectivity and 

temperature exist, this procedure is not done 

variationally, but as an additional step after the 

minimization of the 3DVAR cost function.     

  

In our case, reflectivity data are converted 

into hydrometeor species using the Ferrier 

equations (Ferrier 1994) for rainwater and 

Rogers and Yau (1989) for snow and hail.  

Radar-observed hydrometeor fields are used to 

replace those present in the background 

whenever they are available.  This is done 

based on the assumption that the radar-observed 

precipitation fields are, in general, superior to 

those present in the model background field.  A 

noted issue with the ARPS 3DVAR 

procedure—and one that we experience in this 

work—arises when spurious hydrometeors 

exist in the background field while radial 

velocity data do not.  In this situation, it is 

difficult to remove precipitation from the 

model grid, especially when the environment 

is unstable (Xue et al. 2013).  To an extent, 

assimilating clear-air velocities from Doppler 

radar can mitigate this problem, but these data 

often are not available in the necessary 

locations.   

 
The final step in the ARPS 3DVAR complex 

cloud analysis is an in-cloud thermal 

adjustment, which attempts to account for the 

effects of latent heat release during the 

condensation process.  In this step, a moist 

adiabatic ascent profile, subject to dilution by 

mixing, is calculated from the analyzed cloud 

base.  Where this temperature exceeds that of 

the background, the temperature is increased. 

The complex cloud analysis also increases the 

environmental temperature in regions that have 

analyzed clouds along with upward vertical 

velocities.  Hu et al. (2006a) and Brewster et al. 

(2005) further describe the ARPS complex 

cloud analysis procedure.  

 
e.  Observation quality control 

 
An important step in the data-assimilation 

procedure is the quality control of observations.  

Observations are quality controlled in a multi-

step process during data assimilation.  First, 

differences between observations and 

background values are computed and 

measurements that exceed user-defined limits 

and climatological thresholds are discarded.  

Next, observations are checked for temporal 

consistency during the previous hour.  

Additionally, observations are “buddy-

checked” against surrounding values via a 

Barnes interpolation procedure (Barnes 1964).  

Owing to the inclusion of data from several 

unconventional sources, another quality-

control step removes surface stations with very 
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low wind speeds resulting from transmission 

errors or poor siting (this issue will be 

discussed at more length in the next section).  

Stations reporting wind speeds <1 m s
–1

 

concurrent with background values >5 m s
–1

 

are removed from the assimilation dataset, 

similar to Horel and Dong (2010).  

Observations obtained via the Meteorological 

Assimilation Data Ingest System (MADIS) are 

also subject to internal quality-control checks, 

based on procedures outlined in the NWS 

Techniques Specification Package (NWS 

1994). 

 

4.  Experiment design and methodology 
 

a.  Observational datasets 
 

In this study, we assimilate observations from 

conventional sources such as upper air soundings 

(RAOBs), wind profilers, the Aircraft 

Communications Addressing and Reporting 

System (ACARS, Moninger et al. 2003), 

Automated Surface Observing System (ASOS) 

and Automated Weather Observing System 

(AWOS), and surface mesonet sites whenever 

available.  In addition to these traditional datasets, 

we also assimilate observations from several non-

conventional sources, which are outlined below. 

 

1) CWOP OBSERVATIONS 
 

Initially started by a group of landowners 

with access to electronic weather stations, the 

CWOP since has expanded to include over  

10,000 members who voluntarily share their 

weather information via the Automatic Position 

Reporting System as a Weather Network 

(APRSWXNET, from CWOP 2014).  These 

observations, near homes and business, are 

transmitted to the Meteorological Assimilation 

Data Ingest System  (MADIS) and are subject to 

the same quality-control checks as other datasets.  

Information about the quality control can be 

found in NWS (1994).  In this study, we refer to 

the observations obtained through the 

APRSWXNET as CWOP stations. 

 

2) AUTOMATED WEATHER STATION 

OBSERVATIONS 
 

EarthNetworks, which operates the 

WeatherBug network, has installed weather 

sensors at over 8000 locations across the 

country.  Initially, stations were installed at 

public schools to provide real-time weather data 

for use by broadcast studios.  This live weather 

information also was integrated into school 

curricula in order for science, technology, 

engineering, and math, or STEM, instruction.  

Over the past few years, coverage of the 

Automated Weather Station (AWS; 

EarthNetworks 2015) network has increased 

greatly.  The provider has partnered with 

broadcast studios, private companies and local 

governmental agencies to provide a dense 

network of surface observations to research 

institutions, the NWS and the public.   

 

 

Figure 5:  Plot of the locations of a) conventional (black squares) and b) non-conventional surface stations 

assimilated in our experiments.  Conventional, WeatherBug (blue dot), and CWOP (black triangle) 

locations plotted are from 0100 UTC 16 May 2013 and are generally representative of stations available 

through the assimilation procedure.  Locations of all GST observations assimilated in the 0100–0145 UTC 

window are shown as X.  Selected county names and the Cleburne tornado track (red) appear in (a). 
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3)  GST OBSERVATIONS 
 

In 2009, GST, NOAA and the National 

Mesonet Program started a Mobile Platform 

Environmental Data observation network 

(MoPED; Heppner 2013).  This network consists 

of observing sensors mounted on buses and 

transportation fleets around the U. S.  The GST 

system does not observe wind data because of 

contamination issues while vehicles are traveling 

at highway speeds.  In this work, roughly 400–

600 GST observations are available during each 

5-min assimilation window (see Section 4c). 

Observations during each 5-min assimilation 

period within a distance of 2 Δx (800 m) are 

combined into a single synthetic observation via 

a Barnes weighting factor (Barnes 1964).     
 

Figure 5 provides a comparison of the 

conventional and non-conventional surface 

observations that are assimilated in our 

experiments.  As mentioned previously, because 

of the siting of non-conventional stations in 

backyards (CWOP) and on school rooftops 

(AWS), the windspeed observations from these 

sources are found to be consistently low-biased.  

We attempt to alleviate this issue, to an extent, 

via the previously mentioned low-windspeed 

quality-control check, as well as inflating non- 

conventional wind observation errors during the 

analysis step (Table 1). 
 

b.  3-km forecasts 
 

A single forecast is run on the 3-km grid for 

the purpose of providing background fields and 

lateral boundary conditions for the 400-m runs.  

The initial background field for the coarse-

resolution 3-km domain is supplied by the 13-km 

Rapid Refresh (RAP; Brown et al. 2012) analysis 

valid at 2100 UTC 15 May 2013.  This grid is 

forced at the boundaries by subsequent RAP 

forecasts at hourly intervals until 0400 UTC 16 

May.  Hourly data assimilation cycles are 

performed using conventional observations 

including wind profilers, aircraft observations 

(ACARS), upper-air soundings (RAOBs), and 

surface sites. 
 

Data from wind profilers and upper-air 

radiosondes (when available) are analyzed in the 

first 3DVAR pass using a horizontal 

decorrelation length (defined as the radius at 

which the observational weight from the 

recursive filter is e-folded, or reduced by roughly 

67%) of 150 km.  Surface observations from 

ASOS, AWOS, mesonet, and aircraft are 

assimilated in a second pass with a reduced 

decorrelation length of 50 km, which acts to fill 

in additional information about the kinematic 

and thermodynamic fields within the lowest 

model layers. 
 

Table 2:  Details of the 400-m assimilation-forecast experiments. 
 

Experiment 
Conventional 
surface data 

Non-conventional  
surface data 

CASA 
data 

WSR-88D 
data 

TDWR data 

CTL All All All All All 

NOSFC None None All All All 

NONEWSFC All None All All All 

WXBUGADD All WXBUG in Johnson County, TX All All All 

WXBUGWIND All 
WXBUG wind in Johnson 

County, TX 
All All All 

WXBUGTHERMO All 
WXBUG T, Td, P variables in 

Johnson County, TX 
All All All 

AMATREDUCE All 
All, but reduced  

observation error 
All All All 

 

Table 3:  3DVAR analysis-pass configuration. 
 

Analysis 
Pass 

Avg. station 
spacing (d, km) 

Horizontal 
decorrelation 
length (km) 

Vertical 
decorrelation 
length (km) 

Incorporated Data 

1 50 + 100 0.8 RAOBS, wind profilers 

2 30 50 0.5 ASOS, AWOS, Mesonet, ACARS 

3 10 10 0.5 AWS, GST, CWOP 

4 0.4 0.8 0.3 Radar radial velocity 
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Figure 6:  Schematic representation of assimilation cycles for the 3-km and 400-m domains.  For clarity, 

only boundary-condition interpolations at the top of each hour are shown.  In reality, the 3-km domain 

supplies interpolated boundary conditions to the 400-m grid at 5-min intervals. 

 
c.  400-m forecasts 

 

The 3-km forecast valid at 0100 UTC 16 May 

2013 is interpolated to the 400-m domain to 

provide background fields for our high-

resolution data-denial experiments.  Each 

experiment differs by the set of observations that 

are incorporated during a 45-min intermittent 

assimilation period using 5-min cycling intervals 

between 0100 and 0145 UTC.  Forecasts begin at 

0145 UTC and end at 0400 UTC, and are forced 

every 5 min by interpolated boundary conditions 

from the 3-km nest.   Figure 6 shows a schematic 

of the general assimilation procedures for both 

the 3-km and 400-m grids.  An example namelist 

file used to run the 400-m simulations, which has 

been provided as supplemental data, can be 

found here. 

 

Several additional 400-m simulations were 

also launched after a 0000 to 0045 UTC 

assimilation period.  This was an attempt to 

capture the evolution of an earlier EF4 tornado in 

Granbury, TX, spawned by the same 

thunderstorm that produced the Cleburne EF3 

tornado.  However, these simulations were not 

able to produce a persistent supercell, possibly 

because of the lack of surface observations west 

of Hood County, near the thunderstorm and 

during this assimilation window (see Fig. 4).   

 

Table 2 provides an overview of the 

experiments run in this study.  In the control 

experiment (CTL), all available conventional and 

non-conventional observations are assimilated 

along with radial velocity and reflectivity data 

from eight Doppler radars (Fig. 3).  Because we 

assimilate observations from different sources, 

we use multiple passes of the ARPS 3DVAR 

with decreasing decorrelation scales to account 

for variations in observation spacing.  

Conventional upper-air and surface observations 

are assimilated in the first two 3DVAR passes 

with decorrelation scales of 100 km and 50 km, 

respectively, while non-conventional surface 

stations are incorporated in the third pass with a 

reduced decorrelation scale of 10 km to account  

for increased station density.  Doppler-radar 

radial velocities (Vr) are analyzed in the fourth 

pass with the smallest decorrelation length of 0.8 

km.  Table 3 summarizes the 3DVAR analysis 

strategy employed on the 400-m grid.  

 

Experiment AMATREDUCE is the same as 

CTL, except the observation errors in the O-

matrix in (1) of the non-conventional surface 

stations are artificially reduced to match those of 

the ASOS stations.  Experiments NONEWSFC 

and NOSFC deny non-conventional surface 

stations and all surface stations, respectively, 

from the analysis cycling procedure.  Experiment 

http://ejssm.org/ojs/public/vol10-2/namelist.pdf
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WXBUGADD is identical to NONEWSFC, 

except observations from the 

WeatherBugnetwork within Johnson County, TX 

(near the Cleburne supercell) are included in the 

analysis procedure. Results from the 

WXBUGWIND and WXBUGTHERMO are 

identical to WXBUGADD except that they 

 

 

 

Figure 7:  Plots of 0145 UTC 15 May 2013 10-m θe (shaded) and wind (vectors) analyses for experiments 

a) CTL, b) NONEWSFC, c) NOSFC, d) WXBUGADD, e) WXBUGWIND, and f) WXBUGTHERMO.  

For reference, the supercell is circled in (a). 
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WXBUGADD experiment encouraged two 

additional tests to determine the impact of the 

WeatherBug kinematic and thermodynamic 

variables on storm evolution.  Experiments 

incorporate only kinematic and thermodynamic 

observations, respectively, from the Johnson 

County WeatherBug stations. 
 

An additional data-denial experiment 

assimilating the single CASA radar located in 

Arlington, TX was run, but because its 

unambiguous range covered none of the  

Cleburne storm, little impact was noted on the 

subsequent forecast evolution.  Furthermore, this 

paper primarily attempts to address the forecast 

impact from various surface observation 

systems, and therefore radar-data denials will be 

investigated in future work. 
  

5. Results 
 

In this section, we present results of the data 

denial and sensitivity experiments with particular 

emphasis on the Cleburne supercell.  The first 

section focuses on differences in model fields at 

the end of the assimilation window (valid at 0145 

UTC), followed by a discussion of the effects of 

these differences on the evolution of features in 

the 400-m forecasts.  A forecast-verification 

comparison is discussed at the end of this section. 

 

a.  Analysis comparisons and verification 
 

Qualitatively, the greatest differences among 

the data-denial experiments can be seen in the 

low-level moisture fields.  A comparison of 10-

m equivalent potential temperature (θe) and 

winds valid at 0145 UTC is shown in Fig. 7.  In 

CTL, a region of relatively higher θe (with values 

around 360 K) is noted across portions of eastern 

Hood, northeastern Somervell, and extreme 

southwestern Johnson counties (Fig. 7a).   

NONEWSFC fails to depict a similar θe pattern, 

while NOSFC similarly fails to depict values 

above 340 K in the same vicinity (Figs. 7b,c).  

The inclusion of WXBUG stations in Johnson 

County in WXBUGADD and 

WXBUGTHERMO (Figs. 7d,f) results in 

increased 10-m θe values, which are more 

consistent with those seen in CTL. 
 

This result is consistent with the surface 

observation distribution in the southwest portion 

of our domain.  Figure 5 shows a low density of 

conventional observing systems in the Johnson-

Hood county area, with a mean station separation 

of roughly 40–50 km.  Moreover, the only 

conventional surface stations that exist in this 

vicinity are the generally less-accurate AWOS 

sites, meaning these observations have lower 

weights in the ARPS 3DVAR scheme.  The 

inclusion of non-conventional stations in CTL 

and WXBUGADD greatly improves the density 

and spatial distribution of surface observations, 

which permits greater detail and accuracy in the 

third 3DVAR analysis pass.    
 

Considerable differences in the 10-m θe field 

are also noted in northwestern Parker County, 

where CTL analyzes a local minimum around 

320 K associated with earlier thunderstorm 

outflow.  The denial of all surface stations in 

NOSFC results in values that are roughly 20–25 

K warmer.  NONEWSFC is also warmer than 

CTL, but not to the level of NOSFC.  

Experiments WXBUGADD, WXBUGTHERMO 

and WXBUGWIND closely resemble 

NONEWSFC as expected, since no additional 

data are assimilated in this region. 
 

Figure 8 displays θe biases (observed value – 

analysis value) valid at the final analysis time of 

0145 UTC 16 May, using data from ten ASOS 

sites.  The data from these stations are not 

strictly independent due to the fact that we 

assimilate these observations in the first cycle at 

0100 UTC.  These ten sites are included in the 

first analysis pass and used as verification points 

because we consider them to be the most 

accurate sensors in the domain, as well as the 

most representative of the local environment 

given their siting characteristics.   
 

Consistent with the results described above, 

the θe bias values in Parker County at KMWL 

are considerably reduced between CTL (2.3 °C) 

and both NONEWSFC (–3.5 °C) and NOSFC   

(–14.1 °C).  These results indicate that the 

decrease in θe values in northwestern Parker 

County in the CTL experiment more closely 

resemble observed values.  Similarly, biases at 

KDTO, located in Denton County, are improved 

from 11.6 °C in NONEWSFC to –0.9 °C in the 

CTL simulation.    In general, the greatest 

improvements in equivalent potential 

temperature bias values in CTL occur in 

locations that are data-sparse with respect to 

conventional surface stations (i.e. at KMWL, 

KDTO, KTKI, KTRL, and KCRS), which 

implies a benefit of assimilating non-

conventional observations. 
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Figure 8:  Bias values (observed – analysis, K) of 

surface level equivalent potential temperature for 

a) CTL, b) NONEWSFC, and c) NOSFC at final 

analysis time. 
 

Table 4 provides root-mean-square-difference 

(rmsd), bias, and mean absolute errors (mae), of 

10-m θe computed at all 10 verifying ASOS 

stations.  In terms of rmsd, NOSFC verifies the 

worst of all seven experiments, with a similarly 

large mae.  The NOSFC bias is close to zero 

owing to the presence of large offsetting negative 

and positive θe biases (Fig. 8).  The addition of 

conventional surface stations in NONEWSFC 

results in only slight improvements to the rmsd.  

However, the assimilation of non-conventional 

surface observations in CTL substantially 

improves the rmsd, bias, and mae values, with 

the rmsd more than halved over NOSFC.  

Experiment AMATREDUCE results in a 

marginally worse final θe analysis verification 

with respect to CTL, even though the same 

observations were used, owing to the 

specification of higher accuracy than warranted 

to the non-conventional stations. 

 

Table 4:  θe root mean square error, bias, and 

mean absolute error calculated at ten ASOS 

stations at 0145 UTC 16 May 2013 for various 

experiments. 

 

Experiment 
RMSD 

(°C) 
BIAS 
(°C) 

MAE 
(°C) 

CTL 3.1 0.7 2.7 

NONEWSFC 5.8 3.8 5.3 

NOSFC 6.3 0.2 5.0 

WXBUGWIND 5.9 3.8 5.3 

WXBUGTHERMO 5.6 3.1 4.9 

WXBUGADD 5.5 2.8 4.7 

AMATREDUCE 3.6 0.9 3.3 

 

Verification against five ASOS stations in 

Dallas and Tarrant Counties alone reveals that 

non-conventional observations do not have quite 

as large an effect compared to the domain-wide 

statistics discussed above (not shown).  These 

results are consistent with the findings of 

Tyndall and Horel (2013) in which the authors 

noted the impact of mesonet observations in 

major metropolitan centers were reduced due to 

the large number of additional stations available 

to correct the background field.  In contrast, 

mesonet observations were seen to have a higher 

impact in data-sparse regions, where the 

background provided most of the information 

about the current atmospheric state. 

 

b.  Storm-evolution forecast comparisons 
 

1)  TORNADIC CIRCULATION STRUCTURE 

AND EVOLUTION 
 

In this subsection we discuss forecast 

differences among the experiments outlined in 

section 4c with respect to the forecast evolution 

of the Cleburne tornadic supercell.  

 

The aforementioned differences in the low-

level thermodynamic fields near Johnson County 

lead to differences in the evolution of the 

Cleburne supercell.  Given the high-resolution of 

the model domain, these differences are most 

substantial during the first hour of the 400-m 

simulation (between 0145 and 0245 UTC)—the 

primary focus of our discussion. 
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Figure 9:  10-m vertical vorticity (color fill, s
–1

) and 50 dBZ reflectivity contour.  Plots from left to right 

show forecasts at 300, 600, 900, and 1200 seconds.  Experiment CTL is shown in a–d, NONEWSFC in  

e–h, and NOSFC in i–l. Click image for enlargement. 

 

Before discussing the results of the 400-m 

forecasts, we briefly mention the reasoning 

behind calling the intense low-level circulations 

that develop in the various model runs tornado-

like vortices (TLV)
1
.  Because of the relatively 

course 400-m simulation resolution compared 

to the width of a typical tornado, we cannot 

resolve an actual tornadic circulation 

accurately.   

 

Within the first 5 min of experiment CTL, a 

persistent and well-defined low-level TLV 

develops in southwestern Johnson County with 

peak 10-m vertical vorticity (ζ ) exceeding 

0.1 s
–1

 (Fig. 9a).  Ten minutes later, at 0200 

                                                           
1
Following Weisman and Trapp (2003) and 

Schenkman et al. (2011a) we classify a TLV as an 

intense region of 10-m vertical vorticity (ζ) that 

exceeds 0.05 s–1 and persists for >15 min.  We have 

doubled the value of ζ used in Schenkman et al. 

(2011a) since intense mesovortices not associated with 

the central circulation often exceed the 0.025 s–1 value 

used in that paper. 

UTC, the low-level circulation reaches its 

maximum intensity with surface wind speeds 

approaching 55 m s
–1

  (Fig. 9c) (EF2-equivalent 

intensity).  At this time, a secondary rear flank 

downdraft (RFD) surge forms and approaches 

the low-level circulation from the west.  Within 

the next 5 min, this RFD surge overtakes the 

TLV, leading to rapid weakening of the low-

level ζ field (Fig. 9d). 

 

In the NONEWSFC experiment, the initial 

10-m vortices that were carried through the 

assimilation cycle dissipate during the first 10 

min (Fig. 9e,f).  In contrast to the rapid 

intensification of the 10-m circulation noted in 

CTL, the NONEWSFC simulation does not 

develop any concentrated regions of 10-m ζ 

until after 0210 UTC (Fig. 9h), at which point a 

weak TLV develops in southeastern Johnson 

County before quickly dissipating roughly 

5 min later (not shown). 

 

http://ejssm.org/ojs/public/vol10-2/Figure9.pdf
http://ejssm.org/ojs/public/vol10-2/Figure9.pdf
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Figure 10:  As in Fig. 9 but for (a–d) WXBUGADD, (e–h) WXBUGTHERMO, and (i–l) WXBUGWIND. 

Click image for enlargement.. 
 

 

Experiment NOSFC initially develops a 

weak 10-m circulation with ζ generally  

<0.05 s
–1

 by 0155 UTC (Fig. 9j), eventually 

wrapping northeastward into the center of the 

storm while overtaken by the RFD between 

0205 and 0210 UTC (Fig. 9l).  Qualitatively, 

the NOSFC simulation closely resembles that of 

NONEWSFC through the first 20 min.  The  

10-m circulation dissipates by 0215 UTC. 

 
Experiments WXBUGADD (all conventional 

data and WeatherBug observations in Johnson 

County) and WXBUGTHERMO (same as 

WXBUGADD but only thermodynamic 

variables from WeatherBug observations) also 

develop an intense TLV with very similar timing 

to CTL. (Fig. 10b).  Both forecasts quickly 

reorganize existing low-level vorticity into a 

well-defined circulation within the first 10 min 

as the storm develops and moves east.  By  

900–1200 seconds (0200–0205 UTC), ζ of the 

10-m circulation exceeds 0.15 s–1 (Fig. 10c,d).  

Following the other experiments, the TLVs in 

both WXBUGADD and WXBUGTHERMO 

occlude around 0210 UTC and dissipate shortly 

thereafter (not shown). 
 

WXBUGWIND initially develops a weak 

low-level circulation by 0150 UTC that appears 

to be embedded within the main RFD (Fig. 10i).  

Over the next 5 min or so, this circulation center 

moves quickly to the south-southeast with the 

RFD surge and dissipates soon thereafter (Fig. 

10j,k).  AMATREDUCE, like WXBUGWIND, 

is unable to produce a well-developed TLV (not 

shown). 
 

Figure 11 shows 10-m isotach fields (color-

filled above 29 m s
–1

) for each of the 

experiments with radar-observed vorticity tracks 

from NSSL displayed in (a).  These swaths show 

maximum 10-m wind speeds in each grid box at 

30-s intervals.  In order to reduce the effects of 

contamination from strong RFD winds, surface 

winds were plotted only if they were within three  

 

http://ejssm.org/ojs/public/vol10-2/Figure10.pdf
http://ejssm.org/ojs/public/vol10-2/Figure10.pdf
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Figure 11:  Maximum 10-m wind speeds (m s
–1

) associated with 10-m AGL ζ >0.05 s
–1

  (b–h, Vh).  Only 

winds >29 m s
–1

 are plotted.  NSSL radar observed rotation tracks (s
–1

) are plotted in (a, ζ). The black 

overlaid line is an approximation of the NWS-surveyed tornado track. 

 
gridpoints of surface ζ >0.05 s

–1
. An 

approximation of the Cleburne tornado track 

from radar imagery is overlaid on each plot as a 

black line.  Consistent with the circulation 

strengths previously discussed, experiments 

CTL, WXBUGADD, and WXBUGTHERMO all 

produce weak to EF2-equivalent wind speeds 

(associated with high surface ζ values) across 

southwestern and south-central Johnson county, 

while NOSFC, WXBUGWIND, and 

AMATREDUCE forecast substantially reduced 

surface winds. NONEWSFC develops 
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Time (UTC) 

Maximum Vertical Vorticity in Cleburne Supercell 

  0145                      0155                       0205                      0215                      0225                       0235                      0245 

Maximum Surface Wind Speed in Cleburne Supercell 

a) 

b) 

Figure 12:  Time series plots of maximum 10-m values of:  a) ζ (s
–1

) and b) wind speeds (m s
–1

). 
 

 

weak EF1-strength wind speeds roughly 10 km 

east of the actual tornado track, indicating a 

delay in the development of the low-level 

circulation.     

 

Figure 12 shows time series plots of 

maximum near-surface ζ and wind speeds 

computed in the same manner as in Fig. 11.  

CTL quickly develops high values of ζ and 

surface winds.  Both WXBUGADD and 

WXBUGTHERMO produce the largest ζ in 

roughly the same time frame.  WXBUGWIND, 

as mentioned above, initially develops a low-

level circulation that quickly dissipates within 

the RFD.  NONEWSFC develops the highest 

wind speeds 15–20 min later than CTL, which is 

actually closer in time to the observed tornado.  

However, this delay leads to a roughly 10-km 

eastward displacement in the NONEWSFC wind 

swath (cf. Fig. 11).  

 

The TLVs and associated high wind speeds 

only last about half as long as the observed 

tornado.  This is possibly a result of both the 

relatively coarse 400-m grid spacing compared 

to the width of the actual tornado, and the use of 

single-moment microphysics which has been 

shown to create large and intense cold pools 

(Dawson et al. 2010).  Even with the reduced 

rain-intercept parameter discussed in 3a, our 

simulations likely are still creating cold pools 

that are unrealistically strong, ultimately 

shortening the TLV lifetime.   

 

2)  TRAJECTORY ANALYSIS 

 

To evaluate the source region of high-

vorticity air present in the updraft, backward 

parcel trajectories are calculated within the low-

level central updraft at approximately 1 km AGL  
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Figure 13:  CAPE (color fill, J kg
–1

) and trajectories for experiments labeled above each panel.  CAPE is 

plotted at 0145 UTC along with the 25-dBZ reflectivity contour.  Backward trajectories are shown in all 

panels from 0155 UTC to 0145 UTC. 
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Figure 14:  As in Fig. 13, but for a) NOSFC and b) AMATREDUCE.  NOSFC backward trajectories taken 

ending at 0210 UTC. 

 

 

leading up to 0155 UTC.  In all cases, 72 parcels 

in a 300-m radius ring surrounding a central 

point are integrated backwards using a fourth-

order Runge-Kutta scheme every 30 s for 10 

min, or to the final analysis time at 0145 UTC.  

The trajectories are shown in Fig. 13 where 

heights AGL are indicated by colored dots 

(surface levels are cooler colors and higher levels 

are warmer).  In the experiments that quickly 

develop persistent and deep low- to mid-level 

updrafts (i.e. CTL, WXBUGADD, and 

WXBUGTHERMO), parcels entering the main 

updraft originate from either the pocket of 

unstable air to the northeast of the forward-flank 

downdraft (FFD) or from the large reservoir of 

high-CAPE air to the southwest of the storm 

(Fig. 13a,d,e).  Furthermore, inflow air 

intercepting the base of the forward-flank gust 

front (FFGF) emanates from the southwest, 

within an additional region of high-buoyancy air 

(not shown).  Experiments WXBUGWIND and 

NOSFC, which were unable to produce 

persistent and strong updrafts, reveal parcels 

originating from less-buoyant air (Fig. 13f, c).  

 

Experiments NOSFC and AMATREDUCE 

evolve in a somewhat different manner.  In 

NOSFC, surface ζ maximizes later than in CTL, 

WXBUGADD, and WXBUGTHERMO (cf. Fig. 

12), and the central updraft does not organize 

until after 0205 UTC.  The trajectories at 0155 

UTC show parcels originating from a region of 

somewhat reduced SBCAPE around 2000 J kg
–1 

in northern Bosque County (Fig. 13b).  However, 

backward trajectories taken 15 min later show 

moderately to strongly unstable air (SBCAPE 

between 2250 to 2750 J kg
–1

) originating from 

Hood and Somervell counties supporting a 

strong low-level updraft at 0210 UTC (Fig. 14a).  

Similarly, most of the parcels entering the central 

updraft in AMATREDUCE originate from a 

region of SBCAPE around 2500 J kg
–1

 to the 

southeast of the FFGF with no indication that 

parcels from the CAPE “pocket” to the northeast 

have entered the updraft at this time (Fig. 14b) as 

was observed in CTL.  

 

Based on the noted differences in the updrafts 

of the Cleburne storm, the stretching of vertical 

vorticity should play a key role in determining 

the strength of the low-level circulations.  Time-

height profiles of maximum vertical velocity (w) 

and ζ are displayed in Figs. 15 and 16 

respectively.  The w plots are of the maximum in 

a square of 2.4 km around the largest value of ζ 

around the low-level TLV.  A persistent and 

strong low-level updraft is present in CTL 

throughout the first 20 min of the simulation, 

coincident with the rapid increase of near-surface 

ζ.  A similar updraft structure is noted in both 

WXBUGADD and WXBUGTHERMO along 

with the associated development of very high 

values of ζ (>0.1 s
–1

), supporting the assumption 

that stretching plays a primary role in the 

development of the TLV seen in these 

experiments.  NONEWSFC, which spawned a 

TLV roughly 20 min later than CTL, initially 

does not develop appreciably strong low- and  
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Figure 15:  Time-height profiles of w (m s
–1

) within a square of length 2.4 km around the maximum 

value of ζ  between 0145 and 0230 UTC.  Black contour drawn at w = 15 m s
–1

. 
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Figure 16:  As in Fig. 15, but for vertical vorticity (s
–1

). mid-level w.  A sudden increase in updraft strength 

below 3.5 km occurs 1200–1500 s in the forecast, attendant with a short-lived, intense surface circulation.  

Much weaker w (generally <25 m s
–1

 through the first 3 km) is noted in NOSFC. 
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Also, the updraft heights in CTL, 

WXBUGTHERMO, and WXBUGADD are 

noticeably lower than in NOSFC, 

WXBUGWIND, AMATREDUCE, and in the 

first 20 min of NONEWSFC, with w >15 m s
–1

 

routinely originating below 500 m as low-level ζ 

increases (Fig. 15).  This consistent decrease in 

low-level updraft height is not seen in NOSFC, 

AMATREDUCE, or the early stages of 

NONEWSFC.  While other processes are present 

here, the rapid increase in low-level updraft 

strength, likely from the ingestion of high-θe air, 

plays a large role in the development of intense 

mesovortices due to ζ stretching. 

 

c. Surface-level forecast verification 

 

To examine the impact of surface data on the 

forecast evolution of surface fields, rmsd values 

are computed for 60 min at the ten independent 

ASOS observation locations mentioned in 

section 5a.  We verify forecasts using the ASOS 

rather than non-conventional observations for 

two primary reasons: 1) they are the most 

accurate and representative data available in the 

domain, and 2) are the only observations that are 

independent (except for their use in the very first 

analysis cycle). The rmsd values for 2-m 

temperature, 2-m dewpoint, and surface pressure 

are shown in Fig. 17.  The rms differences in 

CTL for both temperature and dewpoint are the 

lowest out of all simulations for roughly the first 

30 min, while the AMATREDUCE experiment 

shows slightly higher values than CTL 

throughout the 60-min verification window.  

This result is consistent with our expectations 

owing to the erroneously reduced errors ascribed 

to the non-conventional surface observations.  

Interestingly, experiments NONEWSFC, 

WXBUGTHERMO, and WXBUGWIND begin 

to verify better than CTL after 30–40 min in the 

temperature and dewpoint fields.  Closer 

inspection of individual station time series 

reveals a rapid decrease in both temperature and 

dewpoint at KDTO (Denton Municipal Airport) 

15–20 min into the simulation related to the 

passage of a gust front (Fig. 18).  NONEWSFC, 

WXBUGTHERMO, and WXBUGWIND, which 

all initially start out with temperatures and 

dewpoints that are too low, quickly approach the 

observed values after the gust front passage, 

resulting in the (erroneous) improvement in the 

rmsd values over CTL in Fig. 17.  

These verification results are consistent with 

the nature of convective-scale predictability.  

While previous research has shown that the 

predictability of the larger-scale flow is on the 

order of days to weeks (Lorenz 1969), it 

decreases with diminishing horizontal scale.  

Cintineo and Stensrud (2013) found that while 

storm location and the lightest areas of rainfall 

were predicable out to 1–2 hours, locations of 

cold pools or mesoscyclones were only 

predictable out to tens of minutes. 

 

6. Discussion and conclusion 

 

While numerous studies have tested the 

impacts of assimilating Doppler radar velocities 

and reflectivity on high-resolution forecasts of 

convective storms, few have attempted to 

quantify the impacts from observations from 

surface stations.  This is likely due to the reduced 

spatial and temporal resolution of surface 

networks over traditional radar networks.  

Nevertheless, surface observations provide 

useful information about the low-level 

thermodynamic and kinematic structures that are 

typically not resolved by conventional Doppler 

radars.  Additionally, surface observations are 

able to directly influence the distribution of heat 

and moisture in the lowest model levels, 

something that is not possible through the 

assimilation of radar data alone.  To assess 

potential impacts of surface data, we performed 

data denials of conventional and non-

conventional surface observations on 400-m-

resolution forecasts of a supercell that developed 

on 15 May 2013 in north-central Texas.     

 

Our results show that assimilating 

observations from non-conventional sites such as 

the EarthNetworks WeatherBug network or those 

from the Citizen Weather Observer Program 

(CWOP), along with properly specified 

observation errors, lead to improved surface 

analysis of the low-level thermodynamic field in 

this example test case.  Additionally, rmsd 

values of forecast temperature, dewpoint, and 

surface pressure were improved over simulations 

that denied these stations from the assimilation 

window when compared to observations from 

several independent surface stations. 
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Figure 17:  Root mean square difference (RMSD) time-series of (a) 2-m temperature (°C), b) 2-m dewpoint 

(°C), and c) surface pressure (hPa) computed at 10 independent surface stations between 0145 and 0245 

UTC 16 May 2013, for experiments as labeled in the legend. 

 

 
Figure 18: Traces of a) 2-m temperature (°C) and b) 2-m dewpoint (°C) at Denton Municipal Airport 

(KDTO) between 0145 and 0245 UTC 16 May 2013, for experiments labeled in the legend.
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A substantial increase in the 10-m θe field 

were noted in the data sparse region of Johnson 

County, TX, where the addition of 

thermodynamic data from several WeatherBug 

sites ultimately proved to be critically important 

in forecasting the evolution of a tornadic 

supercell that moved through the town of 

Cleburne.  The experiments that did not 

assimilate non-conventional surface data—in 

particular, data from the WeatherBug 

network—either delayed the development of an 

intense surface-level TLV, or were unable to 

develop one at all.  In contrast, the control 

simulation, and those that made use of the 

additional thermodynamic information from 

several WeatherBug sites around the Cleburne 

supercell, were able to develop an intense 

surface-level circulation that roughly coincided 

with the observed tornado track.  

 

These differences in storm evolution seem to 

stem from the ability of the non-conventional  

observation sites to provide information about 

the near-surface thermodynamic field and to 

“fill in the gaps” in data coverage in an 

otherwise data-sparse portion of the domain.  

Increases in the 10-m θe and SBCAPE within 

the inflow-region of the Cleburne supercell are 

ultimately associated with the development of 

vigorous low- and mid-level updrafts.  While 

purely speculative, the rapid intensification of 

low-level ζ coincident with increases in updraft 

strength is possibly an indication that the low-

level updraft plays a key role in the stretching 

of ζ leading up to the development of the 

Cleburne TLV.  However, further testing is 

needed to show that this is the case, and is out 

of the scope of this current work.  

 

While these results are encouraging, further 

investigation is necessary to determine if the 

positive analysis and forecast impact seen here 

applies to additional high-impact weather 

events.  Rather than deny observations by 

sensor type, additional experiments testing the 

impacts of removing observations from 

particular regions of the domain may reveal 

more about the relative importance of surface 

data in relation to storm location.  Two key 

results of this study are that 1) the incorporation 

of additional surface observations led to 

improvements in the analysis and forecast of a 

tornadic supercell in north-central Texas and 2) 

the implementation of an accurate Warn-on-

Forecast procedure (Stensrud et al. 2009, 2013), 

at least in this case, appears to be highly 

dependent upon the accurate depiction of the 

low-level thermodynamic field.   
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REVIEWER COMMENTS 

 

[Authors’ responses in blue italics.] 

 

REVIEWER A (John D. Horel): 

 

Initial Review: 

 

Recommendation:  Revisions required. 

 

The manuscript by Carlaw et al. is well written and presents some interesting results. The figures are 

appropriate, although the labeling can get a bit confusing.  My only concerns center around the 

interpretation of some of the validation results, particularly relying on comparisons to ASOS stations.  In 

addition, there tends to be too much discussion of the accuracy as opposed to representativeness of the 

various surface observation types. 

We thank you for your numerous insightful comments, which have added considerably to the readability 

and scientific content of this manuscript.  

Major comments:. The ARPS-3DVAR system has been around quite a while.  It wasn’t clear to me why it 

was necessary to review the details of the system quite as much as is present in the manuscript.  But, since 

the electronic journal format allows a bit more flex in terms of paper length, it was a helpful review for me.  

I’m OK with much of this description in its current form, but it would be helpful to highlight any 

significant changes from earlier versions.  

The main reason for the rather detailed description of the ARPS 3DVAR system stemmed from our need to 

address changes we made to standard inputs, as well as notable pitfalls of some procedures.  In particular, 

the discussions about altering the 3D divergence constraint coefficients, inability of the ARPS 3DVAR to 

remove spurious hydrometeors from analyses, and the addition of a low wind-speed check, were facilitated 

by a general discussion of the entire 3DVAR system.  

We fully agree with your suggestion to highlight changes from previous versions and have added text 

within the discussion of the ARPS 3DVAR system.  

I understand why the focus of the verification of the analyses up to 0145 UTC relied more on the 

“independent” ASOS stations (even though they are used in the first pass of the recursive analysis), but that 

is not clear for verifying the forecasts from 0145–0245 UTC, e.g., Fig. 17 for the ten “independent stations” 

(all the station observations are now independent for the forecast period) and KDTO specifically in Fig. 18.  

Why didn’t you verify the forecasts versus the observations of the 6 WeatherBug stations in Johnson 

County?  It would seem to be more relevant to know how well the various sensitivity runs did in that area, 

rather than in the other regions of the domain.  

The decision to verify both analyses and the subsequent simulations using the ASOS sites came down to a 

matter of consistency and the desire to perform as unbiased [of] a verification as possible given our limited 

choices of highly accurate and representative surface observations.  While the nonlinearity of the 

simulations should quickly remove much of the dependence on the observations used in the analyses, some 

degree of influence still exists in the forecasts.  This could provide an “unfair advantage” to the non-

conventional dataset when verifying forecasts that incorporated that data during each of the analysis 

cycles, especially given how many more non-conventional observations are assimilated compared to the 

number of ASOSs.  We decided instead that using the 10 ASOS stations provided a good “big-picture” 

overview as to the general performance of each forecast, while letting the simulations of the supercell/TLV 

themselves speak to the importance of the non-conventional observations.  We have elaborated upon this 

rationalization at the beginning part of 5c: Surface-level forecast verification.   

Throughout the paper, ASOS stations are described as more “accurate”.  However, sensor accuracy in 
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terms of the characteristics of the physical hardware and related maintenance protocols are only part of the 

issue.  More critical is the representativeness of the observations, which is never mentioned in the 

manuscript.  For example, I believe all the WxBug stations in Johnson County are at schools.  The wind 

sensors are likely mounted right above the roof line, which may be why the winds are not representative of 

conditions generally and the simulations using WxBug winds do poorly.  Temperature and moisture 

observations at the schools are less sensitive to the siting issues and are likely more representative of 

conditions nearby.  

We appreciate this insightful observation.  This indeed is an issue that we noted (in related but separate 

work during related Master’s thesis work) but failed to include in this manuscript. We mentioned the 

addition of a quality-control step that removes low wind speeds because of this issue, but were vague and 

incomplete about the reason.  We have expanded the “Observation Dataset” section (4a) to address this 

issue of representativeness.  Additionally, we added discussion about the motivation to use the 10 ASOS 

stations as verification points based on both their improved physical/sensing characteristics and their—in 

general—better representativeness of the local environment over the non-conventional sites.   

The observation errors assigned in Table 1 should include assumptions about representativeness.  But, these 

values seem low, and there is no information supplied on these values relative to those of the background 

errors.  For example, Tyndall et al. (2010, WAF) guesstimated 2:1 METAR/background error variances 

with slightly higher ratios for the PUBLIC (CWOP and WeatherBug) observations.  I don’t see a lot of 

evidence for it in the figures, but there is a chance that you are overfitting the analyses to the observations 

that are assumed to be more accurate than they are.  The Non-conventional WxBug temp observations (last 

row in Table 1) may actually affect the analysis more because you are not weighting them highly relative to 

the other observations and creating local analysis bullseyes.  In those data-sparse regions they can then help 

correct a poor background.  

The OB:BACKGROUND ratio varies somewhat owing to variations of values with height and observed 

field, but in general these ratios are near 0.8-1:1 for the conventional stations, and between 1-2:1 for the 

non-conventional observations.  Several previous assimilation tests were performed using all available 

data to qualitatively determine a “best-guess” for the observation:background ratios by varying the 

observation errors and then qualitatively assessing how smooth the final product was (attempting to avoid 

the production of too many analysis bullseyes).   Additionally, the use of multiple 3DVAR passes with 

incrementally decreasing de-correlation radii helps to create generally smoother analysis fields, 

necessitating the use of somewhat smaller error ratios.  Finally, the AMATREDUCE experiment, which 

artificially reduced the non-conventional observation variances to match those of the ASOS stations did 

show a decrease in verification scores compared to the Control run, indicating that our choice of 

ob:background error for the non-conventional sites—at least in this case—is likely close to optimal for this 

situation.  We have added a summary of these points in the ARPS3DVAR section. 

 

[Minor comments omitted...] 

 

Second review: 

 

Recommendation:  Accept. 

 

General comment:  The authors have done a good job responding to the reviewers' comments.  My 

specific concerns have been addressed adequately and recommend that the paper be accepted for final 

publication. 

 

 



CARLAW ET AL.  20 October 2015 

30 

REVIEWER B (Leigh G. Orf): 

 

Initial Review: 

 

Reviewer recommendation:  Revise and resubmit. 

 

General comments:  In this paper, the authors describe the effect of assimilating surface data from 

nonconventional sources. They find that by assimilating surface data in otherwise data-sparse regions, 

ARPS simulations show improved results as compared to simulations that exclude these data. 

 

Major comments (issues I have with paper, in order of most to least important):  I do not find the 

results of this research to be very novel it is not really a surprise that having (even somewhat imprecise) 

surface data in data sparse regions such as in key locations for supercell morphology is concerned would 

result in a more accurate model simulation of a supercell. 

 

While it certainly stands to reason that the assimilation of observations in data sparse regions should—

given proper error values—improve an analysis, it was not clear to us that the inclusion of surface data 

should result in an improved simulation of a supercell, let alone a tornado-like vortex (TLV).   Substantially 

more information about the kinematic fields within the supercell is available from the assimilation of 

Doppler radar velocities, especially given the proximity to the KFWS site.  In addition, as outlined in the 

introduction, Schenkman et al. (2011) find that the assimilation of radial velocities is of greater importance 

than Oklahoma Mesonet surface data in the simulation of a mesoscale convective vortex. Finally, this is—

to the best of our knowledge—the first time an attempt has been performed to both quantify and 

qualitatively assess the impacts of non-conventional surface observations on high-resolution simulations.  

We believe this is a unique contribution to the broader scientific literature, especially given the unexpected 

profound effects these data have on our simulations.  In an attempt to improve this manuscript, we have 

laid out more clearly the novelty of this work at the end of the introduction. 

 

I find the paper lacks focus [and] tries to cover too much ground.  Is it really necessary to go into such 

detailed in the difference between the simulations?  The paper seems to veer too much into descriptions of 

supercell morphology. Are these details necessary to make your point that the inclusion of these 

unconventional sources is important?  Many of the simulated storms appear to not show any rotation aloft, 

suggesting that they are not supercellular. 

 

We believe this level of discussion is warranted.  One of the main points of this paper is to show clearly the 

distinct differences in the simulated evolutions of the various supercells, a task that requires a thorough 

discussion of the morphologies of each simulated supercell.  Even with the in-depth analysis of the 

distribution of theta-e, visualization of vertical vorticity, and plotting of trajectories, we’ve only begun to 

scratch the surface of an entirely more complex parameter space that goes into producing a tornado.   

 

Finally, we do see deep and intense rotation within our simulated supercells as evidenced by plots of 

vertical vorticity (see point to follow below which provides more detail).  The time-height plot shown in 

Fig. 16 was taken in a straight column, and therefore begins to exit the area of maximum vorticity aloft as 

the vortex tube is tilted from the vertical amidst strong deep-layer shear, which may give the appearance of 

a vortex tube of limited vertical extent. 

 

The paper is highly descriptive perhaps at the expense of a more valuable analysis. 

 

This is a fair point and a previous reviewer voiced some concerns about the level of detail that went into 

the ARPS3DVAR section.  We point out, however, that several important changes are made to the analysis 

code for this work, which necessitates a more thorough description of the analysis system.  In addition, 

those readers unfamiliar with data assimilation may find some of the information useful in facilitating a 

better understanding of this work’s methodology.  

  

None of the simulations seemed to get the tornado track right at all, as compared to observations (shown in 

Fig. 11). The different simulations are compared to each other, but not to the observed storm (not sure 
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whether this is due to lack of observational data?) 

 

Getting the tornado track exactly right was not a primary goal of this research, nor is it one that should be 

expected at such a large grid length relative to the dimensions of a tornado.  Instead, this work is an 

attempt to share with the broader scientific community an important result that may improve tornado 

simulations in the future, points that we have laid out clearly in the introduction and conclusion from a 

bigger-picture, mesoscale environmental perspective.  

 

There are too many figures, and many figures lack adequate annotations (more detail below). 

 

We believe the figures are all useful in facilitating the reader’s understanding of this work, particularly 

those who may not be familiar with high-resolution modeling, data assimilation, or tornadogenesis.  

However, we have taken many of your suggestions into account and used them to improve the quality of 

several figures.  We have additionally removed what was previously Fig. 8, as another reviewer found it 

added little substance to the manuscript.   

 

It is clear that the authors got a positive result by assimilating surface data from unconventional sources.  It 

would have been more interesting if they hadn’t gotten that result!  In some regions, surface θe is off by 

20K!  So is it any surprise that a supercell ingesting this kind of near-surface-θe air will be more vigorous 

than one that ingests dry/cool air?  That is the main problem I have with the paper, that as far as pushing the 

field forward, I think this paper reads too much like a paper on exploring the effects of supercell 

morphology to changes in environmental conditions, and many papers have already been written on this. 

 

We address these concerns in point 2 above and in the first response in the “Paper Conclusions” section 

below, but provide some additional discussion here.  The purpose of this work is not to show that 

increasing theta-e within a supercell’s inflow results in a stronger storm, but that more properly 

characterizing the near-storm environment is accomplished only with the inclusion of non-conventional 

observations, which then results in improved simulations of the supercell.  

  

I understand the practical nature of their approach, categorizing based upon network/data provider, not 

location but Fig. 4 indicates the vast majority of the nonconventional surface obs are clustered in what 

would be the (far?) forward-flank region of the supercell.  One wonders the relative importance of the 

nonconventional obs as a function of location, not as a function of network.  I think a more valuable 

approach would have been to selectively remove [and] add assimilated surface data in regions as a function 

of location relative to the mesocyclone and the air that feeds it.  It may turn out that only a tiny percentage 

of the assimilated data matters at all (i.e., 1 or 2 points determine whether you get a vigorous circulation or 

not), and the rest is of secondary importance.   

 

While it’s true that a majority of the non-conventional observations shown in Fig. 4 fall in the forward-

flank region of the supercell at the final analysis time of 0145 UTC, this is at the end of a 45-minute 

assimilation period.  During the beginning of the 5-min intermittent assimilation cycle, the supercell is 

located in northern Hood County (see Fig. 4a for reference) where the cluster of non-conventional sites in 

Hood and Johnson Counties would be in or near the storm inflow.   

 

To address your second point about selectively adding back observations in particular regions, we have 

done this with the WXBUGADD, WXBUGTHERMO, and WXBUGWIND experiments.  These experiments 

add back observed variables to the analysis in/near the storm inflow and we find that they do in fact play a 

fundamental role in developing a TLV in the correct location. 

 

It seems that in many of the simulations, we just don’t even get a supercell.  When I look at the 10-m 

vorticity and the surface wind speed, it seems we have marginal supercells at best.  Is it necessary to 

analyze these storms in such detail?  [Then] Figure 16 is pretty clearly indicating storms with little to no 

rotation. 

 

We appreciate this observation; however, we offer an argument indicating that we do simulate rapidly 

rotating storms.  Weisman and Trapp (2003) consider vertical vorticity greater than 0.025 s
–1

 to be the 
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level defining a mesovortex in their 1-km grid spacing simulations.  Scaling this to 400 m roughly equates 

to 0.01 s
–1

, an order of magnitude less than we see in our results.  In addition, Xue et al. (2014) show 

simulations of a tornadic supercell at 1-km and 50-m grid spacing and found maximum vertical vorticity 

values on the order of 0.015 s
–1

 and 1–1.5 s
–1

 respectively (see Figs. 6 and 13 in their paper).  These values 

scale comparatively well to our values (~0.1–0.2 s
–1

) at 400-m grid spacing.  To address your last point, 

the time-height plots of vertical vorticity were taken in a straight column through the maximum surface-

level vertical vorticity (ζ).  Thus the column quickly begin to exit the primary vertical vortex tube, which 

has been tilted, and therefore do not capture the full scale of vertical vorticity through the entire depth of 

the storm.  However, our main goal with Fig. 16 was to show the magnitude of ζ associated with the 

simulated storm’s low-level updraft in Fig. 15, not the full breadth of the vortex tube.        

 

References: 

 

 

Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: 

Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 2779–2803. 

 

Xue, M., M. Hu, and A. D. Schenkman, 2014: Numerical prediction of the 8 May 2003 Oklahoma City 

tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D data. Wea. 

Forecasting, 29, 39–62. 

 

Do the authors have any explanation for the rapid spinup of the control simulation, and lack thereof for all 

other simulations? 

 

This could be the result of a number of phenomena: initial organization of low-level vertical vorticity, the 

actual theta-e values in both the inflow and RFD, differences in the final analysis developed during the 45-

min assimilation-forecast window, etc.  We can only speculate as to the exact reasoning here, and further 

understanding would require a much more detailed investigation outside the scope of this work.  CTL, 

WXBUGTHERMO, and WXBUGADD all spin up within 200–400 s of one another, while 

WXBUGTHERMO and WXBUGADD simply maintain a higher level of ζ for an extended period of time 

compared to CTL.   

 

Getting thetae right at the surface in regions important to supercell morphology leads to dramatic 

differences in numerical simulation morphology, a not surprising result, and appears to be the main 

conclusion of the paper. 

 

We likely could have artificially inflated the theta-e in and around the supercell’s inflow and produced 

similar results, a finding that would not be surprising.  The fact that we produce these results via the 

inclusion of previously untested, potentially less accurate and representative sensors is what is 

fundamentally new to the field of high-resolution data assimilation and modeling.  In other words, the 

“end” is not the most surprising part, the “means to that end” are.   

 

At the end of the second to last paragraph you state that “...lending support to the idea that the low-level 

updraft plays a key role in the stretching of vertical vorticity leading to the development of the Cleburne 

mesovortex”.  While this may indeed be true, it is a conclusion that comes about without any previous 

discussion from the paper text, which is ostensibly not about supercell dynamics.  I’m not sure it really 

belongs here, as it appears to be little more than speculation, not the result of any analysis. 

 

We completely agree with your concerns here and have altered the last two sentences of that paragraph to 

make the speculative nature of that argument more clear.  

 

I think a more valuable contribution would look at the relative importance of assimilating surface data in a 

more generic sense, grouping not by network but by location.  Then you could go a step beyond saying that 

having more assimilated surface data improves the simulation, and could explore just how much you need 

to make an impact and why.  Grouping by network/provider company is not useful in a case-by-case basis; 

with the next storm, who knows how it would have panned out?  It would have been more valuable, I think, 

to deny data in a more selective way to see the relative value of assimilated surface data with respect to 
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relative storm location. 

To some extent, we have addressed this issue already in the present work.  In typical Observing System 

Experiment (OSE)-fashion, we denied observation platforms by type, but the WXBUGADD, 

WXBUGTHERMO, and WXBUGWIND experiments added stations (albeit from a single data source) near 

the storm inflow back into the analysis for just this purpose.  However, a more thorough location-specific 

data denial would require substantial additional investigation, which is largely tangential to the main 

scope of this work.  We do agree that a location-specific OSE could be an interesting topic for future work 

and have added a reference to this in the conclusion.  

 

[Minor comments omitted...] 

 

Second review: 

 

Recommendation:  Accept. 

 

General comment:  I am satisfied with the paper as revised, and offer no further suggestions for 

improvement. They have done a fine job addressing my concerns and I recommend it for publication in 

EJSSM. 

 

 

REVIEWER C (Brice E. Coffer): 

 

Initial Review: 

 

Reviewer recommendation:  Accept with major revisions. 

 

General comments:  This is a nice paper that demonstrates the positive impacts of assimilating non-

conventional surface observations into high-resolution convection forecasts, especially in regions where the 

conventional data sources are sparse. The research is clearly of interest to the readers of the Electronic 

Journal of Severe Storms Meteorology (EJSSM), especially as the Warn-on-Forecast initiative continues to 

improve in the coming years.  Overall, my comments are mostly minor-to- moderate, but I had a few issues 

which were slightly more major.  Thus, I would like to see the paper again before full acceptance.  If there 

are any questions on my review, feel free to email me at becoffer@ncsu.edu. 

Thank you for providing such clear and constructive comments.  These reviews have added tremendously to 

this paper.  

Major comments: 

The same supercell that produced the Cleburne EF3 tornado discussed herein also produced two tornadoes 

(EF4 & EF1) in the preceding hour and within 30 km.  Can you please comment on the model forecast 

during this time period? Was the convective mode and timing similar to what was observed?  Were any 

400-m forecasts attempted for these tornadoes?  Readers may be interested in this.  

Several 400-m forecasts were attempted roughly during this timeframe to simulate the earlier evolution of 

the tornadic supercell.  However, these simulations were much less successful at producing a rotating 

thunderstorm in the first place.  In order to capture the initial thunderstorm organization and development, 

several experiments were run with an assimilation window running from 0000–0045 UTC using the same 

methodology as described in this manuscript.  A possible explanation for the poor simulation skill may be 

related to the dearth of surface observations in the areas of interest during this timeframe across eastern 

portions of Erath and western Hood counties, where the thunderstorm was initially maturing.  

We agree that this was an oversight to not mention the earlier tornadoes in more detail and as such, have 

added discussion about the 0000–0045 UTC runs and their inability to produce comparatively accurate 

forecasts (see section 4c, 400-m forecasts).   

mailto:becoffer@ncsu.edu
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The discussion in section 5a solely focuses on the low-level thermodynamic fields (represented by θe). 

However, on at least two occasions, the text states that the kinematic fields also are compared.  Please 

either include similar analyses to Fig. 7 and Table 4 regarding the low- level wind field or remove the 

implication that differences in the kinematic fields “lead to differences in the evolution of the Cleburne 

supercell”. 

The references to the analysis of the kinematic fields have been removed in those two instances since 

discussion of changes to the low-level wind fields is outside the scope of this paper.  We have, however, left 

previous references to the kinematic fields in the discussion about the WXBUGWIND experiment.  

The description and presentation of the trajectory analysis in Section 5b (2) needs more work:  

a. Interpolation:  How were the parcels integrated backward?  What was the interpolation order? How much 

time elapsed between output used for interpolation?  Dahl et al. 2012 showed that backward trajectories 

were prone to large interpolation errors in supercells, especially in confluent flow regimes and as the output 

interval increased above 30 s.  How many parcels were tracked?  What was the grid spacing between the 

parcels? 

Citation:  

Dahl J. M. L., M. D. Parker, and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-

surface mesocyclones of simulated supercells.  Mon. Wea. Rev., 140, 2959–2966. 

Thank you for pointing out this oversight.  We have added additional details to the trajectory analysis 

subsection detailing the use of (1) a 4
th

 order Runge-Kutta scheme using (2) all available data, which was 

output at 30-s intervals with (3) 72 parcels in a circular ring of 300-m radius (every 5°). 

b. [Then] Figures 14, 15:  It took me a considerable amount of time to orient myself with these figures. 

Firstly, the figures should show an outline of the storm (e.g. the 20-dBZ reflectivity contour).  Secondly, it 

makes more sense to me to exclusively focus on the trajectories originating in the low-level updraft, since 

the buoyancy of the updraft is the main point of this analysis. Removing the forward flank trajectories 

would also help simplify the figure. 

These two figures have been improved by adding in a 25-dBZ reflectivity contour, which, in this case, 

yields a cleaner figure than the lower 20-dBZ threshold that provides too much noise unrelated to the 

storm.  Additionally, the trajectories from the forward-flank gust front have been removed. 

 [Minor comments omitted.] 

 

Second review: 

 

Recommendation:  Accept with minor revisions. 

 

General comment:  The authors have sufficiently addressed my major concerns.  The goal of the paper is 

to provide a first attempt at assimilating non-conventional surface observations in high-resolution 

convection forecast.  In doing so, this work reiterates the need to have improved lower tropospheric 

observations if the Warn-on-Forecast initiative is to be feasible.  Upon rereading the manuscript, I have 

recommended a few more minor tweaks, but I believe the manuscript is in publishable form, pending these 

relatively minor revisions. 

 

[Minor comments omitted.] 

 


